Sign language translation (SLT) aims to convert a continuous sign language video clip into a spoken language. Considering different geographic regions generally have their own native sign languages, it is valuable to establish corresponding SLT datasets to support related communication and research. Auslan, as a sign language specific to Australia, still lacks a dedicated large-scale dataset for SLT. To fill this gap, we curate an Australian Sign Language translation dataset, dubbed Auslan-Daily, which is collected from the Auslan educational TV series and Auslan TV programs.
With a collection of more than 45 hours of high-quality Auslan video materials, we invite Auslan experts to align different fine-grained visual and language pairs, including video $\leftrightarrow$ fingerspelling, video $\leftrightarrow$ gloss, and video $\leftrightarrow$ sentence. As a result, Auslan-Daily contains multi-grained annotations that can be utilized to accomplish various fundamental sign language tasks, such as signer detection, sign spotting, fingerspelling detection, isolated sign language recognition, sign language translation and alignment. We hope this dataset will contribute to the development of Auslan and the advancement of sign languages worldwide in a broader context. Please watch the video above for more information about the Auslan-Daily translation dataset.